Optical flow estimation as distributed optimization problem - an aVLSI implementation
نویسنده
چکیده
I present a new focal-plane analog VLSI sensor that estimates optical flow in two visual dimensions. The chip significantly improves previous approaches both with respect to the applied model of optical flow estimation as well as the actual hardware implementation. Its distributed computational architecture consists of an array of locally connected motion units that collectively solve for the unique optimal optical flow estimate. The novel gradient-based motion model assumes visual motion to be translational, smooth and biased. The model guarantees that the estimation problem is computationally well-posed regardless of the visual input. Model parameters can be globally adjusted, leading to a rich output behavior. Varying the smoothness strength, for example, can provide a continuous spectrum of motion estimates, ranging from normal to global optical flow. Unlike approaches that rely on the explicit matching of brightness edges in space or time, the applied gradient-based model assures spatiotemporal continuity on visual information. The non-linear coupling of the individual motion units improves the resulting optical flow estimate because it reduces spatial smoothing across large velocity differences. Extended measurements of a 30x30 array prototype sensor under real-world conditions demonstrate the validity of the model and the robustness and functionality of the implementation. index: visual motion perception, 2-D optical flow, constraint optimization, gradient descent, aVLSI, analog network, collective computation, neuromorphic, feedback, nonlinear smoothing, non-linear bias
منابع مشابه
Integrated 2-D Optical Flow Sensor
I present a new focal-plane analog VLSI sensor that estimates optical flow in two visual dimensions. The chip significantly improves previous approaches both with respect to the applied model of optical flow estimation as well as the actual hardware implementation. Its distributed computational architecture consists of an array of locally connected motion units that collectively solve for the u...
متن کاملAnalog Integrated 2-D Optical Flow Sensor
I present a new focal-plane analog very-large-scale-integrated (aVLSI) sensor that estimates optical flow in two visual dimensions. Its computational architecture consists of a two-layer network of locally connected motion units that collectively estimate the optimal optical flow field. The applied gradient-based optical flow model assumes visual motion to be translational and smooth, and is fo...
متن کاملComputation of Smooth Optical Flow in a Feedback Connected Analog Network
In 1986, Tanner and Mead [1] implemented an interesting constraint satisfaction circuit for global motion sensing in aVLSI. We report here a new and improved aVLSI implementation that provides smooth optical flow as well as global motion in a two dimensional visual field. The computation of optical flow is an ill-posed problem, which expresses itself as the aperture problem. However, the optica...
متن کاملA Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition
Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...
متن کاملClassifying Patterns of Visual Motion - a Neuromorphic Approach
We report a system that classifies and can learn to classify patterns of visual motion on-line. The complete system is described by the dynamics of its physical network architectures. The combination of the following properties makes the system novel: Firstly, the front-end of the system consists of an aVLSI optical flow chip that collectively computes 2-D global visual motion in real-time [1]....
متن کامل